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Abstract. In this paper we study the optimal control of systems driven by parabolic hemivariational
inequalities. First, we establish the existence of solutions to a parabolic hemivariational inequality
which contains nonlinear evolution operator. Introducing a control variable in the second member
and in the multivalued term, we prove the upper semicontinuity property of the solution set of the
inequality. Then we use this result and the direct method of the calculus of variations to show the
existence of optimal admissible state–control pairs.

Key words: Compact embedding; Control problem; Hemivariational inequality; Monotone operator;
Multifunction; Parabolic equation; Selection; Semicontinuity

1. Introduction

In this paper we study the optimal control of systems governed by a parabolic
hemivariational inequality of the form

y′(t)+ A(t)y(t) + χ(t) = f (t)+ B(t)w(t) a.e. t ∈ (0, T )
y(0) = y0

χ(x, t) ∈ β̂(x, t, u(x, t), y(x, t)) a.e. (x, t) ∈ �× (0, T ),
(P )

whereu andw denote the control variables. This is a nonlinear and nonmonotone
boundary value problem. The lower order term̂β is multivalued and discontinu-
ous while the operatorA(t) is assumed to be monotone and to satisfy certain
coerciveness and boundedness hypotheses.

We note that the problem(P ) arises in many important models for distributed
parameter control problems and that a large class of identification problems enter
our formulation. Let us indicate a problem which is one of the motivations for
the study of hemivariational inequality(P ). In a subset� of R3, we consider the
nonstationary heat conduction equation

∂y

∂t
−1y = f in �× (0, T )

with the initial condition and suitable boundary ones. Herey = y(x, t) represents
the temperature at the pointx ∈ � and timet ∈ (0, T ). It is supposed thatf =
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f + f , wheref is given andf is a known function of the temperature of the form

−f (x, t) ∈ ∂j (x, t, u(x, t), y(x, t)) a.e. (x, t) ∈ �× (0, T ).
Here∂j(x, t, η, ξ) denotes the generalized gradient of Clarke [7] with respect to
the last variable of a functionj : � × (0, T ) × R2 → R which is assumed to be
locally Lipschitz inξ . The multivalued function∂j(x, t, η, ·) : R→ 2R is generally
nonmonotone and it includes the vertical jumps. In a physicist’s language, it means
that the law is characterized by the generalized gradient of a nonsmooth potential
j .

The variational formulation of the above problem leads to the hemivariational
inequality (P ) with A(t) = −1, β̂ = ∂j and is met, for example, in the non-
monotone nonconvex interior semipermeability problems. For the latter, see e.g.
Panagiotopoulos [20], where a temperature control problem in which we regulate
the temperature to deviate as little as possible from a given interval, is considered.
We remark that the monotone semipermeability problems, leading to variational
inequalities, have been studied by Duvaut and Lions in [9] under the assumption
that j (x, t, η, ·) is a proper, lower semicontinuous, convex function which means
that∂j(x, t, η, ·) is a maximal monotone operator inR2.

The goal of our study is twofold. First we intend to obtain an existence result
for the abstract problem(P ). We present a general existence result for weak solu-
tions of problem(P ) obtained via Galerkin method combined with a regularization
procedure. We note that such a result generalizes the recent one of [16]. A second
goal concerns the applications of our abstract result to the control problems which
dynamics are described by hemivariational inequality(P ) in which the operator
A(t) is a nonlinear one. We introduce a control parameterw in the right hand side
of the equation and a control variableu in the multivalued relation in(P ). Then we
investigate the upper semicontinuity of the multifunction(u,w) 7→ S(u,w), where
S(u,w) denotes the set of solutions to hemivariational inequality corresponding to
a control(u,w). The existence of optimal pairs is obtained using the direct method
of the calculus of variations.

There is a large literature on optimal control of evolution problems. We remark
only that the existence and approximation of optimal solutions as well as the ne-
cessary optimality conditions for parabolic control problems have been studied, for
instance, by Lions [14], Ahmed and Teo [1], Cesari [5] and others for evolution and
differential equations and by Barbu [4] and Tiba [26] for variational inequalities.
As concerns control problems for hemivariational inequalities, these problems have
been treated only recently and so far only in the stationary case by Panagiotopoulos
[22], Miettinen [15], Miettinen and Haslinger [17], Haslinger and Panagiotopoulos
[11, 12], Denkowski and Migórski [8].

The theorem on existence of solutions for parabolic hemivariational inequality
has been delivered by Miettinen in [16] while the finite element approximation for
this problem can be found in [18] and in the recent monograph [10].

We mention that the notion of hemivariational inequality was introduced in 1981



OPTIMAL CONTROL OF PARABOLIC HEMIVARIATIONAL INEQUALITIES 287

by Panagiotopoulos for a description of some nonconvex, nonmonotone, multival-
ued relations between stress and strain or reaction and displacement appearing in
large families of important problems in physics and engineering. The theory of
hemivariational inequalities has been proved to be very useful in understanding of
many problems of nonsmooth mechanics, such as the debonding of adhesive joints,
the delamination of multilayered plates, the ultimate strength of fiber reinforced
structures, etc. (see [19], [21], [24]).

An outline of the remainder of the paper is as follows. After preliminaries of Sec-
tion 2, in Section 3 we state and prove our existence result for(P ). We also provide
an additional condition on the functionβ under which we obtain an uniqueness of
the solution of the hemivariational inequality. In Section 4 we treat an optimal
control problem for(P ). Here the dependence of the solution set on the controls is
the crutial point in our approach.

2. Notation

In this section we fix the notation and recall some relevant definitions.
Let� be an open bounded subset ofRN with Lipschitz boundary∂�, 0< T <

+∞ and letQ = � × (0, T ). Let V be a real reflexive separable Banach space
densely and continuously embedded in the spaceH = L2(�). IdentifyingH with
its dual, we have the evolution tripleV ⊂ H ⊂ V ′ (see e.g. [13], [27]). We assume
thatV ⊂ H compactly. We denote by〈·, ·〉 the duality ofV andV ′ as well as the
inner product onH , by || · ||, | · | and|| · ||V ′ the norms inV ,H andV ′, respectively.
Let p andq be constants such that 26 p < +∞ and 1/p+ 1/q = 1.

For eachr > 1, we denote byLr(0, T ;B) the space of strongly measurableB-
valued functionsv : [0, T ] → B such that

∫ T
0 ||v(t)||rB dt < +∞. We introduce

the spacesV = Lp(0, T ;V ), H = L2(0, T ;H), V ′ = Lq(0, T ;V ′) andW(V ) =
{v ∈ V | v′ ∈ V ′}, where the time derivative is understood in the sense of vector
valued distributions. ClearlyW(V ) ⊂ V ⊂ H ⊂ V ′. The pairing ofV andV ′

and the inner product onH are denoted by〈〈f, v〉〉 = ∫ T0 〈f (t), v(t)〉 dt . It is well
known (cf. e.g. [27]) thatW(V ) ⊂ C([0, T ];H) continuously andW(V ) ⊂ H
compactly.

Given a Banach spaceX, the symbolw−X is always used to indicate the space
X equipped with the weak topology.

A function f : � × Rm → R is said to beN-measurable (or superpositionally
measurable) if for every measurable functionu : � → Rm, the functionx 7→
f (x, u(x)) is measurable (see Chang [6] for properties ofN-measurable func-
tions).

3. An existence result

The goal of this section is to provide conditions under which problem (P) has a
solution. To simplify notation we omit the dependence of the right-hand side on
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the control variablew. Throughout this section the control variableu is fixed inU
with U ⊆ L2(Q).

We consider the following evolution initial boundary value problem: findy ∈
W(V ) andχ ∈ H such that

y′(t)+ A(t)y(t) + χ(t) = f (t) a.e. t ∈ (0, T )

y(0) = y0

χ(x, t) ∈ β̂(x, t, u(x, t), y(x, t)) a.e. (x, t) ∈ Q.

(3.1)

We impose the following hypotheses on the data. The first one is standard in the
study of evolution equations, cf. [27].

H(A) : for t ∈ (0, T ) the operatorA(t) : V → V ′ is monotone, hemicontinuous
and satisfies the conditions
(i) (coerciveness) there exist constantsc1 > 0 andc2, c3 > 0 such that for all
v ∈ V andt ∈ (0, T ) we have〈A(t)v, v〉 > c1||v||p − c2|v|2− c3.
(ii) (growth condition) there exist a nonnegative functiong ∈ Lq(0, T ) and
c4 > 0 such that||A(t)v||V ′ 6 g(t)+ c4||v||p−1 for all v ∈ V , t ∈ (0, T ).
(iii) (measurability) the functiont 7→ 〈A(t)z, v〉 is measurable on(0, T ) for all
z, v ∈ V .

H(β) : β : Q× R2→ R, β = β(x, t, η, ξ) is a function satisfying the conditions
(i) β is locally bounded, i.e.∀ r > 0, ∃ c = c(r) > 0 such that|β(x, t, η, ξ)| 6
c(r) ∀ |η| 6 r, ∀ (x, t) ∈ Q and a.e.|ξ | 6 r.
(ii) β is continuous inη uniformly with respect toξ , i.e. ∃ ε0 > 0 such that
∀ (x, t, η, ξ) ∈ Q × R2, ∀ δ > 0, ∃ γ = γ (δ, x, t, η, ξ) > 0 such that
|β(x, t, η, ξ ′)− β(x, t, η′, ξ ′)| < δ as|η − η′| < γ and|ξ − ξ ′| < ε0.
(iii) (x, t) 7→ β(x, t, η, ξ) is continuous onQ for all η ∈ R and a.e.ξ ∈ R.
(iv) (x, t, ξ ) 7→ β(x, t, η, ξ) is measurable inQ× R for all η ∈ R.
(v) |β(x, t, η, ξ)| 6 α(x, t)+ c0(1+ |η| + |ξ |) ∀ (x, t, η, ξ) ∈ Q× R2 with a
nonnegative functionα ∈ L2(Q) and a positive constantc0.

(H0) : y0 ∈ H andf ∈ V ′.

The multivalued function̂β : Q × R2 → 2R appearing in (3.1) is obtained by
“filling in jumps” of a functionβ(x, t, η, ·) : R→ R as follows: forε > 0, (x, t) ∈
Q andη, ξ ∈ R, let

βε(x, t, η, ξ) = ess inf
|τ−ξ |6ε

β(x, t, η, τ ), βε(x, t, η, ξ) = ess sup
|τ−ξ |6ε

β(x, t, η, τ ).

For (x, t) ∈ Q andη, ξ ∈ R fixed, βε is an increasing function ofε andβε is
decreasing inε. Let

β(x, t, η, ξ) = lim
ε→0

βε(x, t, η, ξ), β(x, t, η, ξ) = lim
ε→0

βε(x, t, η, ξ).
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The multifunctionβ̂ is defined by

β̂(x, t, η, ξ) = [β(x, t, η, ξ), β(x, t, η, ξ)].
The hypothesisH(β) has been firstly introduced in [17]. The idea behind it, is to
assume conditions as weak as possible forβ with respect to the last variable. In
order to assure the measurability of the composed function,β has to be smooth in
the other variables. The following result may be proved in much the same way as
Proposition 1.2 of [17].

PROPOSITION 3.1.If the functionβ satisfies hypothesisH(β)(i)÷(iv), then the
functionsβ andβ areN-measurable, that is, the functions

(x, t) 7→ β(x, t, u(x, t), y(x, t)) and(x, t) 7→ β(x, t, u(x, t), y(x, t))

are measurable onQ for anyu, y : Q→ R measurable.

THEOREM 3.1. Let u ∈ U ⊆ L2(Q) be fixed. If hypothesesH(A), H(β) and
(H0) hold, then the problem (3.1) admits at least one solution.

Proof. Step 1. A priori estimates for solutions of the Galerkin equation.
With the problem (3.1) we associate the approximate one which is obtained as
the combination of the regularization ofβ together with the Galerkin method (cf.
[25], [23], [19]). Takeρ ∈ C∞0 ((−1,1)), ρ > 0,

∫ 1
−1 ρ(s)ds = 1 and letρn(s) =

nρ(ns). Let βn : Q × R2 → R be a regularization ofβ given byβn(x, t, η, ξ) =∫
R β(x, t, η, ξ − τ)ρn(τ) dτ . By an argument similar to that of Lemma 1.1 in

[17], we deduce that the functionβn (for 1/n < ε0/2) satisfies the Carathéodory
conditions (it is measurable in(x, t) ∈ Q for all η, ξ ∈ R and it is continuous in
(η, ξ) ∈ R2 for a.e.(x, t) ∈ Q) which implies theN-measurability ofβn.

Let {ϕ1, ϕ2, . . . } be a basis inV , i.e. {ϕi} forms an at most countable sequence
of elements inV , finitely manyϕ1, . . . , ϕn are linearly independent andV =
cl(∪nVn) with Vn = span{ϕ1, . . . , ϕn}. SinceV is separable the existence of such
a basis is guaranteed (cf. Proposition 21.49 in [27]). Moreover, the family{Vn} of
finite dimensional subspaces ofV satisfies

∀ v ∈ V ∃ {vn}, vn ∈ Vn such thatvn → v in V, asn→+∞. (3.2)

Let {y0n} be such thaty0n ∈ Vn for n ∈ N,

y0n→ y0 in H, asn→+∞. (3.3)

The regularized Galerkin problem for (3.1) is following: findyn such thatyn ∈
Lp(0, T ;Vn), y′n ∈ Lq(0, T ;Vn) and

〈y′n(t), vn〉 + 〈A(t)yn(t), vn〉 + 〈βn(t, u(t), yn(t)), vn〉 = 〈f (t), vn〉
for a.e. t ∈ (0, T ) and allvn ∈ Vn

yn(0) = y0n.

(3.4)
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Let yn be the solution to (3.4). UsingH(β)(v), we have

||βn(·, u(·), yn(·))||H 6 c5 (1+ ||u||H + ||yn||H ) , (3.5)

∣∣∣∣∫ t

0

∫
�

βn(x, s, u(x, s), yn(x, s))yn(x, s) dx ds

∣∣∣∣
6 c6

(
1+ ||u||2

L2(0,t;H) + ||yn||2L2(0,t;H)
)
, (3.6)

for t ∈ (0, T ) with positive constantsc5 andc6. From (3.4), using integration by
parts formula, (3.6) andH(A)(i), for t ∈ [0, T ], we have

1

2
|yn(t)|2 − 1

2
|y0n|2 =

∫ t

0
〈y′n(s), yn(s)〉 ds

=
∫ t

0
〈f (s)−βn(s, u(s), yn(s))−A(s)yn(s), yn(s)〉 ds6 ||f ||Lq(0,t;V ′)||yn||Lp(0,t;V )d

+c6

(
1+ ||u||2

L2(0,t;H) + ||yn||2L2(0,t;H)
)
− c1||yn||pLp(0,t;V )+ c2||yn||2L2(0,t;H)+ c3T .

By virtue of the Cauchy inequality (ab 6 εp

p
|a|p + ε

−q

q
|b|q for ε > 0, a, b ∈ R)

applied (withε = c1/p
1 ) to the first term on the right hand side, we obtain

|yn(t)|2+ 2c1

(
1− 1

p

)
||yn||pLp(0,t;V) 6 |y0n|2+ 2(c2+ c6)||yn||2L2(0,t;H)

+2(c6 + c3T )+
(

2

qc
q/p

1

)
||f ||q

Lq(0,t;V ′) + c6||u||2L2(0,t;H).

By Gronwall’s inequality and (3.3), it follows that

|yn(t)| 6 c7 for all t ∈ [0, T ], n ∈ N with c7 > 0. (3.7)

Subsequently, there exists a positive constantc8 such that

||yn||V 6 c8 for n ∈ N. (3.8)

Thus, it follows from (3.8) and (3.5) that there exists a constantc9 > 0 such that

||βn(·, u(·), yn(·))||H 6 c9 for n ∈ N. (3.9)

Step 2. Existence of a solution to (3.4).
FromH(A)(ii), H(β)(v), (3.7), (3.8) and the fact thatA(t) : V → V ′ is demi-
continuous (being monotone and hemicontinuous), we obtain that the function
(t, z) 7→ 〈A(t)z + βn(·, t, u(·, t), z), ϕj 〉 satisfies the Carathéodory condition on
[0, T ] × Vn and has an integrable majorant.
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It follows immediately from the Carathéodory theorem for ordinary differential
equation that for everyn, the problem (3.4) has a solutionyn : [0, T ] → Vn which is
continuous and the derivativey′n exists for a.e.t ∈ [0, T ]. Thusyn ∈ Lp(0, T ;Vn).
Furthermore, byH(A)(ii), H(β)(v) and (3.8), the functionst 7→ 〈A(t)yn(t), ϕj 〉,
t 7→ 〈f (t), ϕj 〉 andt 7→ 〈βn(·, t, u(·, t), yn(·, t)), ϕj 〉 belong toLq(0, T ). So, by
the regularized Galerkin equation, we deduce thaty′n ∈ Lq(0, T ;Vn).
Step 3. Convergence of subsequences for (3.4).
Setting(Av)(t) = A(t)v(t) for v ∈ V and t ∈ (0, T ), it is easy to see that the
operatorA : V → V ′ is monotone, hemicontinuous, bounded and coercive (see
also Chapter 30.3 of [27]). We observe that from (3.4), (3.7), (3.8) and (3.9), we
have

|〈〈y′n, zn〉〉| 6 ||f ||V ′ ||zn||V +
∫ T

0

(
g(t)+ c4||yn(t)||p−1

) ||zn(t)|| dt+
+c10||βn(·, u(·), yn(·))||H ||zn||V 6 c11||zn||V

for zn ∈ Lp(0, T ;Vn) with c10, c11 > 0. Hence, by the fact that∪mVm is dense in
V , we get

||y′n||V ′ 6 c12 for n ∈ N with c12 > 0. (3.10)

By the a priori estimates (3.7)–(3.10) and the bound||Ayn||V ′ 6 const (||g||Lq(0,T )
+||yn||p/qV ), we conclude that there exists a subsequence, denoted as before, such
that

yn → y weakly inW(V ), (3.11)

βn(·, u(·), yn(·))→ χ weakly inH , (3.12)

yn(T )→ z weakly inH, (3.13)

Ayn→ w weakly inV ′,

with somey ∈W(V ), χ ∈ H , z ∈ H andw ∈ V ′.

Step 4. The limitsy, χ, z andw satisfyy′ +w+χ = f , y(0) = y0, y(T ) = z and
Ay = w.
The proof of this step is similar to that of Lemma 30.5 in [27]. We mention only the
most important parts. Letψ ∈ C∞0 ((0, T )), v ∈ V . Then, by (3.2) there exists{vn},
vn ∈ Vn such thatvn → v in V , asn → ∞. Denoting9(x, t) = ψ(t)v(x) and
9n(x, t) = ψ(t)vn(x), we have9n→ 9 in W(V ). From (3.4) after integration by
parts we get

−〈〈yn,9 ′n〉〉 + 〈〈Ayn,9n〉〉 + 〈〈βn(·, u(·), yn(·)),9n〉〉 = 〈〈f,9n〉〉.
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Lettingn→∞, we obtain

−〈〈y,9 ′ 〉〉 + 〈〈w,9〉〉 + 〈〈χ,9〉〉 = 〈〈f,9〉〉
and sincev andψ are arbitrary, we havey′+w+χ = f . Next, because the mapping
W(V ) 3 v 7→ {v(0), v(T )} ∈ H × H is linear and continuous, from (3.3), (3.11)
and (3.13), taking weak limits inH , we obtainz = weak− lim

n
yn(T ) = y(T ) and

y0 = weak − lim
n
yn(0) = y(0).

Recall that a monotone and hemicontinuous operator in a reflexive Banach space
satisfies condition(M) (cf. [13], [27]), that is,yn → y weakly inV, Ayn → w

weakly inV ′ and lim sup
n

〈〈Ayn, yn〉〉 6 〈〈w, y〉〉 impliesAy = w. To conclude the

proof of this step, it is enough to prove that lim sup
n

〈〈Ayn, yn〉〉 6 〈〈w, y〉〉. To this

end, we only observe that due to (3.11) and (3.12) and the fact thatW(V ) ⊂ H
compactly, we have

lim
n
〈〈βn(·, u(·), yn(·)), yn〉〉 = 〈〈χ, y〉〉.

Step 5. Proof thatχ(x, t) ∈ β̂(x, t, u(x, t), y(x, t)) a.e.in Q.
We apply Convergence Theorem (see [2], p. 60) to a multivalued mappingβ̂. Pre-
cisely, we observe first that for a.e.(x, t) ∈ Q and everyη ∈ R, β̂(x, t, η, ·) : R→
2R is upper semicontinuous since it is closed and locally compact ([2]). Next, from
(3.11) and the compactness of embeddingW(V ) ⊂ H , we may suppose that

yn(x, t)→ y(x, t) a.e. (x, t) ∈ Q. (3.14)

Finally, by (3.14) and the definition of̂β we deduce that for a.e.(x, t) ∈ Q and for
every neighborhoodN of zero inR2, there existsN0 = N0(x, t,N ) such that

(yn(x, t), βn(x, t, u(x, t), yn(x, t))) ∈ graphβ̂(x, t, u(x, t), ·) +N , ∀ n > N0.

Having in mind the convergence (3.12), Convergence Theorem ensures that for a.e.
(x, t) ∈ Qwe haveχ(x, t) ∈ co β̂(x, t, u(x, t), y(x, t)) = β̂(x, t, u(x, t), y(x, t)),
which completes the proof of the theorem. 2

As an example of the operator which satisfies the hypothesisH(A) we consider
the following one.

EXAMPLE 3.1. Let us fix three positive real constantsm0,m1,m2 and 0< α 6 1.
By S = S(m0,m1,m2, α) we denote the class of functionsa : Q × RN → RN
which satisfy the following conditions:

(i) |a(x, t,0)| 6 m0, a.e. inQ,
(ii) a(·, ·, ξ ) is Lebesgue measurable for everyξ ∈ RN ,
(iii) |a(x, t, ξ) − a(x, t, η)| 6 m1(1+ |ξ | + |η|)p−1−α|ξ − η|α, a.e. inQ and
for everyξ, η ∈ RN ,
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(iv) (a(x, t, ξ ) − a(x, t, η), ξ − η) > m2|ξ − η|p, a.e. inQ and for everyξ, η ∈
RN .

We consider a spaceV which is a closed subspace ofW 1,p(�) such thatW 1,p
0 (�) ⊆

V . LetA(t) : W 1,p(�)→ V ′ be the operator defined by

〈A(t)y, v〉 =
∫
�

(a(x, t,Dy),Dv) dx

with a functiona ∈ S(m0,m1,m2, α), for y ∈ W 1,p(�), v ∈ V andt ∈ (0, T ).
We also defineL(t) : W 1,p(�)→ W−1,q(�) by setting

〈L(t)y, v〉 ≡ 〈A(t)y, v〉 for y ∈ W 1,p(�), v ∈ W 1,p
0 (�),

that isL(t)y = −div a(x, t,Dy). Then for each fixedt ∈ (0, T ), the operator
L(t) satisfies the hypothesisH(A) and the operatorA(t) : V → V ′ satisfies the
hypothesisH(A) with H 1

0 (�) ⊆ V ⊆ H 1(�).

The model example of the function in the classS is following a(x, t, ξ) =
d(x, t)|ξ |p−2ξ , where 26 p < +∞ andd : Q → R is a measurable function
satisfying 0< c1 6 d(x, t) 6 c2 for all (x, t) ∈ Q. It is easy to check that
a ∈ S(m0, c2(p− 1), c122−p,1) for everym0 > 0. The corresponding operator re-
duces in this case to the operator−div

(
d(x, t)|Dy|p−2Dy

)
, which ford(x, t) ≡ 1

coincides with thep-Laplacian one.
The next result provides a certain growth condition on the functionβ under

which the solution of the hemivariational inequality is unique.

PROPOSITION 3.2. Let the operatorA(t) : V → V ′ be monotone and satisfy
H(A)(iii). Letβ : Q×R2→ R satisfyH(β)(i)÷(iv) and the following condition

ess inf
ξ1 6=ξ2

β(x, t, η, ξ1)− β(x, t, η, ξ2)

ξ1− ξ2
> −k for all (x, t, η) ∈ Q× R

(3.15)

with k > 0. Then the problem (3.1) has at most one solution.

Proof. Let(y1, χ1), (y2, χ2) be solutions to (3.1). We will show that(y1, χ1) =
(y2, χ2). For i = 1,2 we have

y′i (t)+ A(t)yi(t)+ χi(t) = f (t) a.e. t ∈ (0, T ) (3.16)

yi(0) = y0 (3.17)

χi(x, t) ∈ β̂(x, t, u(x, t), yi (x, t)) a.e. (x, t) ∈ Q. (3.18)
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Subtracting the two equations in (3.16), multiplying the result byy1(t) − y2(t),
integrating by parts and using (3.17), we obtain

0= 1

2
|y1(t)− y2(t)|2− 1

2
|y1(0)− y2(0)|2

+
∫ t

0
〈A(s)y1(s)−A(s)y2(s), y1(s)−y2(s)〉 ds+

∫ t

0
〈χ1(s)−χ2(s), y1(s)−y2(s)〉 ds

> 1

2
|y1(t)− y2(t)|2+

∫ t

0
〈χ1(s)− χ2(s), y1(s)− y2(s)〉 ds (3.19)

for t ∈ [0, T ]. From (3.15), we get

inf
ξ1>ξ2

β(x, t, η, ξ1)− β(x, t, η, ξ2)

ξ1− ξ2
> −k for all (x, t, η) ∈ Q× R.

Let ω1(s) = {x ∈ � : y1(x, s) > y2(x, s)} andω2(s) = {x ∈ � : y2(x, s) >

y1(x, s)}. Using the last inequality, the definition of̂β and (3.18), we have

〈χ1(s)− χ2(s), y1(s)− y2(s)〉
=
∫
ω1(s)

(χ1(x, s) − χ2(x, s)) (y1(x, s) − y2(x, s)) dx

+
∫
ω2(s)

(χ1(x, s) − χ2(x, s)) (y1(x, s) − y2(x, s)) dx

>
∫
ω1(s)

[
β(x, s, u(x, s), y1(x, s))− β(x, s, u(x, s), y2(x, s))

]
(y1(x, s) − y2(x, s)) dx

+
∫
ω2(s)

[
β(x, s, u(x, s), y2(x, s)) − β(x, s, u(x, s), y1(x, s))

]
(y2(x, s) − y1(x, s)) dx

> −k
∫
ω1(s)

(y1(x, s) − y2(x, s))
2 dx − k

∫
ω2(s)

(y2(x, s)

−y1(x, s))
2 dx = −k|y1(s)− y2(s)|2.

From (3.19) and the last expression we have

1

2
|y1(t)− y2(t)|2 6 k

∫ t

0
|y1(s)− y2(s)|2 ds for t ∈ [0, T ].

Invoking the Gronwall inequality, we easily gety1 = y2. Finally from (3.16) we
deduceχ1 = χ2 which completes the proof. 2
COROLLARY 3.1. Under the hypotheses of Theorem 3.1 and the assumption
(3.15), the problem (3.1) possesses a unique solution.
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4. An optimal control problem

In this section we shall study an optimal control problem for a system which
dynamics is described by the parabolic hemivariational inequality (3.1) with a
nonlinear operatorA(t) on a Sobolev space.

First we study the dependence of the solution set of (3.1) on the control. We
consider a spaceV satisfying

V is a closed subspace ofW 1,p(�) such thatW 1,p
0 (�) ⊆ V. (4.20)

The caseV = W
1,p
0 (�) corresponds to Dirichlet boundary condition and the

caseV = W 1,p(�) corresponds to Neumann boundary data. Intermediate cases
correspond to mixed type boundary conditions.

LetUad×Wad be a nonempty subset (representing the set of admissible controls)
of L2(Q)× L2(0, T ;W) (the space of controls), whereW is a Banach space.

For any given(u,w) ∈ Uad ×Wad , we denote byS(u,w) the set of solutions in
W(V ) of the problem:

y′(t)+ A(t)y(t) + χ(t) = f (t)+ B(t)w(t) a.e. t ∈ (0, T )

y(0) = y0

χ(x, t) ∈ β̂(x, t, u(x, t), y(x, t)) a.e. (x, t) ∈ Q.

(4.21)

The optimal control problem for (4.21) is formulated as follows

min
(u,w)∈Uad×Wad

min
y∈S(u,w)

J (y, u,w), (CP)

whereJ : W(V )× L2(Q)× L2(0, T ;W)→ R is a given cost functional.
We present a result on the upper semicontinuity of the solution setS(u,w) of

(4.21).
Hypotheses:

H(U) : Uad is a nonempty, compact subset ofL2(Q), Wad is a nonempty, closed
convex subset ofL2(0, T ;W), whereW is a reflexive separable Banach space.

H(B) : B ∈ Lq(0, T ;L(W,H)), whereL(X, Y ) denotes the space of linear con-
tinuous operators fromX into Y .

PROPOSITION 4.1.Let V be a space satisfying (4.20). Assume that the hypo-
thesesH(U),H(B),H(β),H(A) and(H0) hold. Then the multivalued mapping

L2(Q)× L2(0, T ;W) ⊃ Uad ×Wad 3 (u,w) 7→ S(u,w) ∈ 2W (V )

has a closed graph in theL2(Q)× (w − L2(0, T ;W))× (w −W(V )) topology.
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Proof. Let (um,wm) ∈ Uad ×Wad ,

um→ u in L2(Q) and a.e. in Q, (4.22)

wm→ w weakly inL2(0, T ;W), asm→∞, ym ∈ S(um,wm) and

ym → y weakly inW(V ), asm→∞. (4.23)

Thus for everym ∈ N, we have

y′m(t)+ A(t)ym(t)+ χm(t) = f (t)+ B(t)wm(t) a.e. t ∈ (0, T ) (4.24)

ym(0) = y0

χm(x, t) ∈ β̂(x, t, um(x, t), ym(x, t)) a.e. in Q. (4.25)

We shall show thaty ∈ S(u,w). First of all, by the hypothesisH(U), we may
assume thatu ∈ Uad . We may also notice thatw ∈ Wad sinceWad is weakly
closed byH(U) and Mazur’s theorem. SinceW(V ) ⊂ H is compact, from (4.23),
we have

ym → y in H and a.e. in Q (4.26)

for a next subsequence. Due to the growth conditionH(β)(v), (4.22) and (4.26),
we get

||χm||H 6 c5 (1+ ||um||H + ||ym||H ) 6 const.,
and so we have

χm → χ weakly inH with someχ ∈ H . (4.27)

From (4.22), (4.25), (4.26), (4.27) and the fact thatβ̂ is convex, compact valued
multifunction, we obtain by using Convergence Theorem of [2] that

χ(x, t) ∈ β̂(x, t, u(x, t), y(x, t)) a.e. in Q. (4.28)

Moreover, by hypothesisH(B), we have

Bwm − χm → Bw − χ weakly inH , (4.29)

where(Bw)(t) = B(t)w(t). Since the set{y ∈ W(V ) : y(0) = y0} (being
closed and convex) is weakly closed (by Mazur’s theorem again), from (4.23), we
immediately get

y(0) = y0. (4.30)

To finish the proof it is enough to show that

Aym→ Ay weakly inV ′. (4.31)
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Analogously toStep 4in the proof of Theorem 3.1 the operatorA satisfies condi-
tions:

Aym→ z weakly inV ′ for ym → y weakly inV and

lim sup〈〈Aym, ym〉〉 6 〈〈z, y〉〉
SinceA is of type (M), it follows that Ay = z, so the convergence (4.31) is
proved.

Finally, using (4.23), (4.29), (4.31) and lettingm → ∞, from (4.24), we con-
clude that

y′(t)+ (Ay)(t)+ χ(t) = f (t)+ (Bw)(t) for a.e.t ∈ (0, T ).
This together with (4.28) and (4.30) givesy ∈ S(u,w), which completes the proof
of the proposition. 2
REMARK 4.1. The Proposition 4.1 still holds if in the hypothesisH(U) we as-
sume only thatUad is a closed subset ofL2(Q).

Now we are in a position to give a result on existence of optimal solutions to
(CP). We restrict ourselves to the casep = 2. We admit

H(J ) : J : H ×H × L2(0, T ;W)→ R is a cost functional of the form

J (y, u,w) =
∫ T

0
L (t, y(t), u(t), w(t)) dt,

whereL : [0, T ] × H × H × W → R ∪ {+∞} is a measurable function which
satisfies three conditions:

(i) L (t, ·, ·, ·) is sequentially lower semicontinuous onH × H × W , a.e.t ∈
(0, T ).

(ii) L (t, y, ·, ·) is convex onH ×W , for all y ∈ H and a.e.t .
(iii) there existM > 0 and ψ∈ L1(0, T ) such that for ally ∈ H , u ∈ H , w ∈ W

and a.e.t , we haveL (t, y, u,w) > ψ(t)+M (|y| + |u|2 + ||w||2W ) .
THEOREM 4.1. Let H 1

0 (�) ⊆ V ⊆ H 1(�). If the hypothesesH(U), H(B),
H(β),H(A) andH(J ) hold, then the control problem (CP) has a solution.

Proof. By Theorem 3.1, we have thatS(u,w) 6= ∅ for all (u,w) ∈ Uad ×
Wad . Let (yk, uk,wk) ∈ S(uk,wk) × Uad × Wad be a minimizing sequence, i.e.
lim
k
J (yk, uk,wk) = inf{J (y, u,w) : y ∈ S(u,w), (u,w) ∈ Uad×Wad}. From the

hypothesisH(U) and the fact that{wk} is bounded inWad (by the coercivity ofJ ),
by passing to a subsequence if necessary, we may assume that

(uk,wk)→ (u∗, w∗) in L2(Q)× (w − L2(0, T ;W)) (4.32)
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with u∗ ∈ Uad. AsWad is weakly closed, we getw∗ ∈ Wad .
We shall derive some a priori bounds for solutionsyk ∈ S(uk,wk). For this pur-

pose we use a similar argument as in Section 3 and replace (4.21) by the equivalent
form

〈y′k(t), v〉 + 〈A(t)yk(t), v〉 + 〈χk(t), v〉 = 〈f (t), v〉 + 〈B(t)wk(t), v〉
for all v ∈ V and a.e. t ∈ (0, T ),

yk(0) = y0

χk(x, t) ∈ β̂(x, t, uk(x, t), yk(x, t)) a.e. (x, t) ∈ Q.

(4.33)

Using H(β)(v), we have||β(·, uk(·), yk(·))||H 6 c5 (1+ ||uk||H + ||yk||H) ,
and consequently,

||χk||H 6 c5 (1+ ||uk||H + ||yk||H ) , (4.34)

∣∣∣∣∫ t

0

∫
�

χk(x, s)yk(x, s) dx ds

∣∣∣∣ 6 c6

(
1+ ||uk||2L2(0,t;H) + ||yk||2L2(0,t;H)

)
,

(4.35)

for t ∈ (0, T ) with positive constantsc5 andc6.
From (4.33), using integration by parts formula, (4.35),H(A)(i) and the Cauchy

inequality, fort ∈ [0, T ], we obtain

1

2

(|yk(t)|2− |yk(0)|2)6 1

2c1
||f ||2V ′+

c1

2
||yk||2L2(0,t;V )+

1

2
||Bwk||2H+

1

2
||yk||2L2(0,t;H)

+c6

(
1+ ||uk||2H + ||yk||2L2(0,t;H)

)
− c1||yk||2L2(0,t;V) + c2||yk||2L2(0,t;H) + c3T .

Hence

1

2
|yk(t)|2+c1

2
||yk||2L2(0,t;V )6

1

2
|y0|2+ 1

2c1
||f ||2V ′+

1

2
||B||2

L2(0,T ;L(W,H))||wk||2L2(0,T ;W)

+c6+ c3T + c6||uk||2H +
(

1

2
+ c6 + c2

)
||yk||2L2(0,t;H).

By Gronwall’s inequality, it follows that|yk(t)| 6 c13 for all t ∈ [0, T ], and
subsequently,

||yk||V 6 c14 for k ∈ N with c14 > 0. (4.36)



OPTIMAL CONTROL OF PARABOLIC HEMIVARIATIONAL INEQUALITIES 299

We observe that from (4.33),H(A)(ii) and Hölder’s inequality, we have

|〈〈y′k, v〉〉| 6 ||f ||V ′ ||v||V + ||Bwk||H ||v||H + ||χk||H ||v||H
+2

(||g||L2(0,T ) + c4||yk||V
) ||v||V

for v ∈ V. Hence, by (4.32), (4.34) and (4.36) we get

||yk||V ′ 6 c15 for k ∈ N with c15 > 0.

From this and (4.36) we conclude that{yk} is bounded inW(V ). Hence, by passing
to a subsequence if necessary, we assume that

yk → y∗ weakly inW(V ). (4.37)

Then invoking Proposition 4.1 and the convergences (4.32), (4.37), we gety∗ ∈
S(u∗, w∗), i.e. the triplet(y∗, u∗, w∗) is admissible for (CP).

Finally, from hypothesisH(J )(iii), we deduce that

L(t, y, u,w) > ψ(t)−M (|y| + |u| + ||w||W) , ∀ y ∈ H, u ∈ U, w ∈ W, a.e. t.

Now applying Theorem 2.1 from [3], we obtainJ is sequentially lower semi-
continuous onL1(0, T ;H) × (w − L1(0, T ;H × W)) and, in consequence,J
is sequentially lower semicontinuous onH × (w−L2(0, T ;H ×W)). Hence and
from (4.32) and (4.37), we conclude thatJ (y∗, u∗, w∗) = inf{J (y, u,w) : y ∈
S(u,w), (u,w) ∈ Uad ×Wad}, which completes the proof of the theorem. 2
REMARK 4.2. The hypothesisH(J ) incorporates the quadratic cost functionals
considered by Lions [14]. In particular, we may takeL(t, y, u,w) = |Cy − y|2 +
(N1u, u)H + (N2w,w)W , whereC,N1 ∈ L(H), N2 ∈ L(W), W being a Hilbert
space,(Niz, z) > νi|z|2 with νi > 0, i = 1,2 andy is a given element (desired
output) inH . Similarily, we can consider a terminal cost functional as well as a
combination of the two. For details, we refer to [14] and [1].
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