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Abstract. In this paper we study the optimal control of systems driven by parabolic hemivariational
inequalities. First, we establish the existence of solutions to a parabolic hemivariational inequality
which contains nonlinear evolution operator. Introducing a control variable in the second member
and in the multivalued term, we prove the upper semicontinuity property of the solution set of the
inequality. Then we use this result and the direct method of the calculus of variations to show the
existence of optimal admissible state—control pairs.
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1. Introduction

In this paper we study the optimal control of systems governed by a parabolic
hemivariational inequality of the form

Yt +AM)y@) + x@) = f()+ Bt)w(t)aet € (0,T)
y(0) = yo (P)
x(x,t) € E(x, tbu(x,t), y(x,t)) ae (x,t) €e 2 x (0, T),

whereu andw denote the control variables. This is a nonlinear and nonmonotone
boundary value problem. The lower order teﬁﬁs multivalued and discontinu-
ous while the operatod (r) is assumed to be monotone and to satisfy certain
coerciveness and boundedness hypotheses.

We note that the problerP) arises in many important models for distributed
parameter control problems and that a large class of identification problems enter
our formulation. Let us indicate a problem which is one of the motivations for
the study of hemivariational inequality?). In a subsef2 of R3, we consider the
nonstationary heat conduction equation

%—Ay:f inQ x (0, T)
with the initial condition and suitable boundary ones. Here y(x, #) represents
the temperature at the pointe © and timer € (0, T). It is supposed thaf =
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f+ ? wheref is given andf is a known function of the temperature of the form
—f(x, 1) €dj(x,t,u(x, 1), y(x,1) ae (x,r) e Lx(0,T).

Heredj(x, t, n, &) denotes the generalized gradient of Clarke [7] with respect to
the last variable of a function: € x (0, T) x R? — R which is assumed to be
locally Lipschitz ing. The multivalued function (x, 7, , -): R — 2% is generally
nonmonotone and it includes the vertical jumps. In a physicist’s language, it means
that the law is characterized by the generalized gradient of a nonsmooth potential
J-
The variational formulation of the above problem leads to the hemivariational
inequality (P) with A(t) = —A, [‘f = 9j and is met, for example, in the non-
monotone nonconvex interior semipermeability problems. For the latter, see e.g.
Panagiotopoulos [20], where a temperature control problem in which we regulate
the temperature to deviate as little as possible from a given interval, is considered.
We remark that the monotone semipermeability problems, leading to variational
inequalities, have been studied by Duvaut and Lions in [9] under the assumption
that j (x, ¢, n, -) is a proper, lower semicontinuous, convex function which means
thatdj(x, ¢, , -) is a maximal monotone operator IR¥.

The goal of our study is twofold. First we intend to obtain an existence result
for the abstract probleroP). We present a general existence result for weak solu-
tions of problem(P) obtained via Galerkin method combined with a regularization
procedure. We note that such a result generalizes the recent one of [16]. A second
goal concerns the applications of our abstract result to the control problems which
dynamics are described by hemivariational inequali®y in which the operator
A(¢) is a nonlinear one. We introduce a control parametémn the right hand side
of the equation and a control varialdén the multivalued relation iiP). Then we
investigate the upper semicontinuity of the multifunctienw) +— S(u, w), where
S(u, w) denotes the set of solutions to hemivariational inequality corresponding to
a control(u, w). The existence of optimal pairs is obtained using the direct method
of the calculus of variations.

There is a large literature on optimal control of evolution problems. We remark
only that the existence and approximation of optimal solutions as well as the ne-
cessary optimality conditions for parabolic control problems have been studied, for
instance, by Lions [14], Ahmed and Teo [1], Cesari [5] and others for evolution and
differential equations and by Barbu [4] and Tiba [26] for variational inequalities.
As concerns control problems for hemivariational inequalities, these problems have
been treated only recently and so far only in the stationary case by Panagiotopoulos
[22], Miettinen [15], Miettinen and Haslinger [17], Haslinger and Panagiotopoulos
[11, 12], Denkowski and Migérski [8].

The theorem on existence of solutions for parabolic hemivariational inequality
has been delivered by Miettinen in [16] while the finite element approximation for
this problem can be found in [18] and in the recent monograph [10].

We mention that the notion of hemivariational inequality was introduced in 1981
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by Panagiotopoulos for a description of some nonconvex, honmonotone, multival-
ued relations between stress and strain or reaction and displacement appearing in
large families of important problems in physics and engineering. The theory of
hemivariational inequalities has been proved to be very useful in understanding of
many problems of nonsmooth mechanics, such as the debonding of adhesive joints,
the delamination of multilayered plates, the ultimate strength of fiber reinforced
structures, etc. (see [19], [21], [24]).

An outline of the remainder of the paper is as follows. After preliminaries of Sec-
tion 2, in Section 3 we state and prove our existence resultfor\We also provide
an additional condition on the functighunder which we obtain an uniqueness of
the solution of the hemivariational inequality. In Section 4 we treat an optimal
control problem for( P). Here the dependence of the solution set on the controls is
the crutial point in our approach.

2. Notation

In this section we fix the notation and recall some relevant definitions.

Let  be an open bounded subsetfdf with Lipschitz boundary, 0 < T <
+oo and letQ = @ x (0, T). Let V be a real reflexive separable Banach space
densely and continuously embedded in the spgdce L3(R2). Identifying H with
its dual, we have the evolution triplée ¢ H c V' (see e.g. [13], [27]). We assume
thatV C H compactly. We denote by, -) the duality ofV andV’ as well as the
inner product ore, by || -||, | - | and|| - ||y~ the norms iV, H andV’, respectively.
Let p andg be constants such that p < +occand 1/p+1/q = 1.

For eachr > 1, we denote byL" (0, T'; B) the space of strongly measuralite
valued functionsv: [0, T] — B such thathT [lv(®)||'y dt < +o00. We introduce
the space® = L?(0, T; V), # = L*(0,T; H), V' = LY(0, T; V') and W(V) =
{veVv|v eV}, where the time derivative is understood in the sense of vector
valued distributions. Clearlyw (V) ¢ vV c # c V'. The pairing of Vv and V'
and the inner product of¢ are denoted by( f, v)) = fOT(f(t), v(0))dt. Itis well
known (cf. e.g. [27]) thatw (V) C C([0, T]; H) continuously andw (V) C #
compactly.

Given a Banach spack, the symbolw — X is always used to indicate the space
X equipped with the weak topology.

A function f: Q x R” — R is said to beN-measurable (or superpositionally
measurable) if for every measurable function2 — R™, the functionx +—
f(x,u(x)) is measurable (see Chang [6] for propertiesNofneasurable func-
tions).

3. An existence result

The goal of this section is to provide conditions under which problem (P) has a
solution. To simplify notation we omit the dependence of the right-hand side on
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the control variablev. Throughout this section the control variaklés fixed inU
with U C L?(Q).

We consider the following evolution initial boundary value problem: fine:
W(V) andy € # such that

Y +ADy@®) +x(®) = f() aete0T)

y(0) = yo (3.1)

x(x, 1) € Blx, t,u(x, 1), y(x,1)) ae (x,1) € Q.

We impose the following hypotheses on the data. The first one is standard in the
study of evolution equations, cf. [27].

H(A) : fort € (0, T) the operatorA(r): V — V'’ is monotone, hemicontinuous
and satisfies the conditions
() (coerciveness) there exist constants> 0 andcy, c3 > 0 such that for all
v e Vandr € (0, T) we have(A(1)v, v) = c1||v]|” — ca|v|? — cs.
(i) (growth condition) there exist a nonnegative functigne L4(0, T) and
¢4 > 0 such that|A(H)v||yv < g(t) + callv]|PLforallve V,r e (O,T).
(i) (measurability) the function — (A(t)z, v) is measurable o0, T') for all
zZ,veV.
H(B): B: O xR? > R, B = B(x,t,n, &) is a function satisfying the conditions
~ (i) Bislocally bounded, i.e¢r > 0, 3¢ = c(r) > OsuchthatB(x, t, 9, &)| <
cr)Vin|<r, V(x,t) e Qanda.el&| <r.
(ii) B is continuous iy uniformly with respect tc, i.e. 3 &9 > 0 such that
YV (x,t,n,6) € Q xR?> VS > 0,3y = y(@,x,t,n,€) > 0 such that
|B(x,t,n,&") — B(x, 1,10, &) < das|p—n'| <y and|§ —§&'| < eo.
(i) (x,t) — B(x,t,n, &) is continuous orY for all n € R and a.e¢ € R.
(iv) (x,t,&) — B(x,t,n, &) is measurable iD x R for all n € R.
V) 1B, 1,1, 6)] < alx,1) +co(d+Inl+ [E) V (x.1,n,&) € Q x R?witha
nonnegative functioa € L?(Q) and a positive constan.
(Hp): yoe Handf eV.

The multivalued functiorff: 0 x R? — 2R appearing in (3.1) is obtained by
“filling in jumps” of a function8(x, ¢, n, -): R — R as follows: fore > 0, (x, 1) €
Q andn, &£ e R, let

Be(x.t,m,6) = esginfﬁ(x, t,n,7), PBe(x,t,n,&) =esssu@(x,t,n, ).

l[t—§I<e lT—&|<e

For (x,7) € Q andn,§ € R fixed, B, is an increasing function of and g, is
decreasing in. Let

ﬂ(‘x’ t’ T,’ S) = ‘!‘ILnO&(x’ t’ )7’ é)’ E(x’ t’ )7’ é:) = (!‘ILnOE(x’ t’ T,’ S)’
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The multifunctiong is defined by

Blx.t, . &) =[B(x.t.n. &), B(x.t,n,8)].

The hypothesifH (8) has been firstly introduced in [17]. The idea behind it, is to
assume conditions as weak as possiblegfavith respect to the last variable. In
order to assure the measurability of the composed functidrgs to be smooth in

the other variables. The following result may be proved in much the same way as
Proposition 1.2 of [17].

PROPOSITION 3.1.1f the functiong satisfies hypothes (8) (i) = (iv), then the
functionsp and g are N-measurable, that is, the functions

(x,1) > Bx, t,u(x, 1), y(x, 1)) and(x, 1) = B(x, 1, u(x, 1), y(x, 1))
are measurable o for anyu, y: Q0 — R measurable.

THEOREM 3.1. Letu € U € L?(Q) be fixed. If hypotheseH (A), H(B) and
(Hp) hold, then the problem (3.1) admits at least one solution.

Proof. Step 1. A priori estimates for solutions of the Galerkin equation.

With the problem (3.1) we associate the approximate one which is obtained as
the combination of the regularization gftogether with the Galerkin method (cf.
[25], [23], [19]). Takep € C§°((—1, 1)), p = O, f_ll,o(s)ds = 1 and letp,(s) =
np(ns). Let B,: O x R?> — R be a regularization of given byg,(x,t,n, &) =
fRﬂ(x, t,n,& — t)p,(t)dr. By an argument similar to that of Lemma 1.1 in
[17], we deduce that the functig), (for 1/n < &o/2) satisfies the Carathéodory
conditions (it is measurable ifx,¢) € Q for all n, & € R and it is continuous in

(n, &) € R?for a.e.(x, t) € Q) which implies thev-measurability ofs,,.

Let {¢1, ¢2, ...} be a basis iV, i.e. {p;} forms an at most countable sequence
of elements inV, finitely many ¢, ..., ¢, are linearly independent and =
cl(U,V,) with V, = sparea, ..., ¢,}. SinceV is separable the existence of such
a basis is guaranteed (cf. Proposition 21.49 in [27]). Moreover, the fdjlyof
finite dimensional subspaces Wfsatisfies

YveV 3{v,}, v, € V,suchthab, — vinV, asn — +oo. (3.2)
Let {yg,} be such thayy, € V, forn € N,
Yo, = Yoin H, asn — +o00. (3.3)

The regularized Galerkin problem for (3.1) is following: fipg such thaty, €
LP(0,T; V), y, € L0, T; V,) and

(Y (), vp) + (A (1), vy) + (Ba(t, u (), yu (1)), v,) = (f (1), va)
fora.er € (0, T) and allv, € V,

Yn (0) = Yon-
(3.4)
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Let y, be the solution to (3.4). Using (8)(v), we have

Bn G u () yu (DIlge < e5 (L4 MMullze + [lynllse) s (3.5)

f f Bn(x, 5, u(x,8), yn(x, )y (x,s)dx ds
0 JQ

< co (L 1o gy + 101 B o) - (3.6)

for t € (0, T) with positive constantgs andcg. From (3.4), using integration by
parts formula, (3.6) an@ (A) (i), fort € [0, T], we have

1 2 1 2 ! /
_lyn(t)| - _lyOnl = (yn(s), yn(s)> ds
2 2 A

t
:/ <f(s)_ﬂn(sa M(S), yn(S))—A(S)yn(S), yn(s)> ds < ||f||L‘1(0,t;V’)||yn||L1’(0,t;V)d

0
+c6 (1+ etl1Z 20010 + ||yn||iz(o,t;H)) — callynll 0wy + C2llynllF2g gy + 3T

p -q
By virtue of the Cauchy inequalityup < 8—|a|1’ + 8—|b|’1 fore > 0,a,b € R)
p q

applied (withe = ci/”) to the first term on the right hand side, we obtain

1
yn (D17 + 2¢1 (1 - ;) 1Dl r0,v) < 1¥onl® + 202 + eo)llyallF20 1: 11

2
+2(ce + ¢3T) + (—ch/p) N g 0svr + collulT2g .-

By Gronwall’s inequality and (3.13), it follows that

|y, (#)] <c7 forallt € [0, T], n € Nwith ¢; > 0. (3.7)
Subsequently, there exists a positive constgisuch that

[[yallv < cg forn eN. (3.8)
Thus, it follows from (3.8) and (3.5) that there exists a constgnt O such that

1B (s (), yu( DIz < co forn eN. (3.9)

Step 2. Existence of a solution to (3.4).

From H(A)(ii), H(B)(V), (3.7), (3.8) and the fact that(¢): V — V' is demi-
continuous (being monotone and hemicontinuous), we obtain that the function
(t,2) = (A(z + Bu(, t,u(-, 1), 2), ¢;) satisfies the Carathéodory condition on
[0, T] x V, and has an integrable majorant.
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It follows immediately from the Carathéodory theorem for ordinary differential
equation that for every, the problem (3.4) has a solutigp: [0, 7] — V,, whichis
continuous and the derivativg exists for a.et € [0, T']. Thusy, € L?(0,T; V,).
Furthermore, by (A)(ii), H(B)(v) and (3.8), the functions— (A(t)y, (1), ¢;),

t = (f@),p;)andt — (B,(-,t,u(-, 1), y,(-, 1)), ¢;) belong toL?(0, T). So, by
the regularized Galerkin equation, we deduce h)at L7(0, T'; V,).

Step 3. Convergence of subsequences for (3.4).

Setting(Av)(#) = A@)v() forv € V andr € (0, T), it is easy to see that the
operatorA: V — V' is monotone, hemicontinuous, bounded and coercive (see
also Chapter 30.3 of [27]). We observe that from (3.4), (3.7), (3.8) and (3.9), we
have

T
(s D) < HLF vl |zal +/0 (g@) + callynO11PY) llza (Ol d2+

+c10llBu (5 u () Y (D gellzallv < caallzally
forz, € LP(0, T; V,) with ¢, c11 > 0. Hence, by the fact that,, V,, is dense in
V, we get
||y,/1||'\)/ < c12 for n € N with c12 > 0. (310)

By the a priori estimates (3.7)—(3.10) and the bouggly, || < const(|1g||Ls0.1)

+||yn||f/"), we conclude that there exists a subsequence, denoted as before, such
that

ya =y weakly inw(v), (3.11)
BuCou(), ya()) > x  weakly inF, (3.12)
ya(T) — z weakly inH, (3.13)

Ay, — w weakly inV’,

with somey € W(V), x € #,z€ Handw € V'.

Step 4. The limitg, x, z andw satisfyy’ + w+ x = f, y(0) = yo, y(T) = z and

Ay =w.

The proof of this step is similar to that of Lemma 30.5 in [27]. We mention only the
most important parts. Let € C3°((0, 7)), v € V. Then, by (3.2) there exis{s,},

v, € V, such that, — vin V, asn — oo. DenotingW¥ (x, t) = ¥ (¢t)v(x) and

W, (x,t) = ¥ (H)v,(x), we havel,, — ¥ in W(V). From (3.4) after integration by
parts we get

— (s W) A+ ((AYn, W) + ((Ba (), 3u (), Wad) = ((f2 W),
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Lettingn — oo, we obtain

/

—((y, ) + (w, ¥)) + {(x, ¥)) = ({(f, ¥))

and sincev andyr are arbitrary, we have'+w+x = f. Next, because the mapping
W(V) > v+ {v(0),v(T)} € H x H is linear and continuous, from (3.3), (3.11)
and (3.13), taking weak limits i/, we obtainz = weak — lim y,(T) = y(T) and
yo = weak — lim y, (0) = y(0).

Recall that a monotone and hemicontinuous operator in a reflexive Banach space
satisfies condition(M) (cf. [13], [27]), that iS,y, — y weakly inV, Ay, — w
weakly in'V’ and lim sug(Ay,, y.)) < ((w, y)) impliesAy = w. To conclude the

proof of this step, itnis enough to prove that lim supy,, v,)) < ((w, y)). To this

end, we only observe that due to (3.11) ar:d (3.12) and the facthat) c #
compactly, we have

|inm (B Cou(), ya (), yu)) = (X, ¥))-

Step 5. Proof thag (x, ) € B(x, t, u(x, 1), y(x, 1)) a.e.in Q. R

We apply Convergence Theorem (see [2], p. 60) to a multivalued mappiRge-
cisely, we observe first that for ae., t) € Q and everyy € R, ff(x, t,n,): R—

2% is upper semicontinuous since it is closed and locally compact ([2]). Next, from
(3.11) and the compactness of embeddi#igV) C #, we may suppose that

Vo(x,t) = y(x,t) ae (x,t) e Q. (3.14)

Finally, by (3.14) and the definition (ifwe deduce that for a.€x, r) € Q and for
every neighborhooov of zero inIR?, there existsVy = Ny(x, ¢, &) such that

(9 (. 1), Bu(x, £, u(x, 1), yu (x, 1)) € graphB(x, t,u(x, 1),) + N, ¥n > No.

Having in mind the convergence (3.12), Convergence Theorem ensures that for a.e.
(x,1) € Qwehavey (x,1) € coB(x, t,u(x, 1), y(x,1)) = B(x, 1, u(x,1), y(x, 1)),
which completes the proof of the theorem. a

As an example of the operator which satisfies the hypothiésik) we consider
the following one.

EXAMPLE 3.1. Letusfix three positive real constantg, my, m, and O< « < 1.
By S = S(mg, m1, m», a) we denote the class of functioass 0 x RY — RY
which satisfy the following conditions:

() la(x,t,0)| < mo, a.e.inQ,

(i) a(-, -, &) is Lebesgue measurable for evérg RY,

(i) la(x,1,&) —a(x, t,n)| < ma@+ &+ )| —n|*, a.e.inQ and
for every&, n e RV,
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(iv) (a(x,t,&) —a(x,t,n),& —n) = mylé —nl?, a.e.inQ and for eveng, n €
RY.

We consider a spadé which is a closed subspaceWf? (€2) such thatWOl”’(Q) C
V.LetA(r): WLP(Q) — V' be the operator defined by

(A()y,v) = / (a(x,t, Dy), Dv) dx
Q

with a functiona € S(mg, m1, mo, ), fory e W-?(Q),v € V andt € (0, T).
We also defind.(¢): W7 (Q) — W~19(Q) by setting

(L(t)y,v) = (A@)y,v) for y e WHP(Q), ve WaP(Q),

that isL(t)y = —diva(x,t, Dy). Then for each fixed € (0, T), the operator
L(t) satisfies the hypothesH (A) and the operatoA(r): V — V’ satisfies the
hypothesist (A) with H}(Q) € V € HY(Q).

The model example of the function in the classs following a(x,t, &) =
d(x,1)|&|P7%, where 2< p < 400 andd: Q0 — R is a measurable function
satisfying 0 < ¢1 < d(x,1) < cp forall (x,1) € Q. Itis easy to check that
a € S(mo, c2(p — 1), 12277, 1) for everymg > 0. The corresponding operator re-
duces in this case to the operatodiv (d(x, t)|Dy|p_2Dy), which ford(x,t) =1
coincides with thep-Laplacian one.

The next result provides a certain growth condition on the funciomnder
which the solution of the hemivariational inequality is unique.

PROPOSITION 3.2. Let the operatorA(¢): V — V’ be monotone and satisfy
H(A)(iii). LetB: O xR? — R satisfyH (8)(i) + (iv) and the following condition

ESSInf ﬁ(-xa z, n, Sl) - ﬂ(-x’ z, n, ";:2)
b6 §1—&

> —k forall (x,t,n) e O xR
(3.15)

with k£ > 0. Then the problem (3.1) has at most one solution.

Proof. Let(y1, x1), (2. x2) be solutions to (3.1). We will show thas, x1) =
(2, x2). Fori = 1,2 we have

yi(t) + Ay (1) + xi(t) = f(r) aere(0,7T) (3.16)
%i(0) = yo (3.17)

xi(x, 1) € Blx,t,ux, 1), v (x,1)) ae (x,1) € Q. (3.18)
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Subtracting the two equations in (3.16), multiplying the resultybf) — y.(7),
integrating by parts and using (3.17), we obtain
1 1
0= 3 =320 = 5110 - 201

t

+fo (A(S)yl(S)—A(S)yz(S),yl(S)—yz(S)>ds+/0 (x1(8)—x2(s), y1(s)—y2(s)) ds

1 t
> §|yl(t) — 202 + fo (x1(s) = x2(5), y1(s) — y2(s)) ds (3.19)
fort € [0, T]. From (3.15), we get

inf é(-xv L, n, gl) - B(-xa t,n, SZ)
162 &1 —&

Letwi(s) = {x € Q : yi(x,s) > yo(x, 5)} andwggs) ={x e y,s) >
y1(x, s)}. Using the last inequality, the definition gfand (3.18), we have

> —k forall (x,t,n) € QO xR.

(x1(s) — x2(s), y1(s) — y2(s))
= / (xa(x,s) — x2(x,8)) (yi(x,s) — y2(x,)) dx
w1(s)

+f )(Xl(x, s) — x2(x,5)) (yu(x, s) — ya(x,5)) dx
w2 (s

>/‘ [B0x s, u, ), 310x,8) = B, s, 1w, 9), 2, 9)) |
(;1186) s) — ya(x, s)) dx

+/ [g(x,s,u(x,s),yz(x,s)) —B(x,s,u(x,s),yl(x,s))]
(;’;(& s) — yi(x, s)) dx

>—k/ (n@a»—nuu»ﬂu—k/ (2(x, )
w1(s) w(s)

—y1(x, )% dx = —k|y1(s) — ya(s) %

From (3.19) and the last expression we have

1 t
§|yl(t) — 202 < k/ |y1(s) — y2(s)|?ds fort € [0, T1.
0

Invoking the Gronwall inequality, we easily get = y,. Finally from (3.16) we
deducey; = x» which completes the proof. O

COROLLARY 3.1. Under the hypotheses of Theorem 3.1 and the assumption
(3.15), the problem (3.1) possesses a unique solution.
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4. An optimal control problem

In this section we shall study an optimal control problem for a system which
dynamics is described by the parabolic hemivariational inequality (3.1) with a
nonlinear operatoA (1) on a Sobolev space.

First we study the dependence of the solution set of (3.1) on the control. We
consider a spac¥ satisfying
V is a closed subspace 8f'* (Q) such thatWé”’(SZ) cV. (4.20)

The caseV = Wol"’(sz) corresponds to Dirichlet boundary condition and the
caseV = Wi7(Q) corresponds to Neumann boundary data. Intermediate cases
correspond to mixed type boundary conditions.

LetU,, x W,, be a nonempty subset (representing the set of admissible controls)
of L2(Q) x L?(0, T; W) (the space of controls), whel¥ is a Banach space.

For any given(u, w) € U,y x W,,, we denote bys(u, w) the set of solutions in
W(V) of the problem:

Y @)+ A@)y@) + x@) = f(1) + B(t)w() aete (0, T)

y(0) = yo (4.21)

x(x, 1) € Blx,t,u(x, 1), y(x, 1) ae (x,1) € Q.
The optimal control problem for (4.21) is formulated as follows

min min J(y,u, w), (Ch
(u,w)eUggxWyuq yeSu,w)
whereJ: W(V) x L?(Q) x L?0, T; W) — R is a given cost functional.
We present a result on the upper semicontinuity of the solutiof @etw) of
(4.22).
Hypotheses:
H(U) : U,y is a nonempty, compact subsetlof(Q), W, is a nonempty, closed

convex subset of. (0, T; W), whereW is a reflexive separable Banach space.
H(B): Be Li(0, T; L(W, H)), whereL(X, Y) denotes the space of linear con-
tinuous operators fronY into Y.

PROPOSITION 4.1.Let V be a space satisfying (4.20). Assume that the hypo-
thesesH (U), H(B), H(B), H(A) and (Hp) hold. Then the multivalued mapping

L?(Q) x L2(0, T; W) D Uy X Wag 3 (u, w) = S(u, w) € 2%V

has a closed graph in the?(Q) x (w — L%(0, T; W)) x (w — W(V)) topology.
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Proof. Let (u,,, w,) € Uyg X Waq,

u, — uin L>(Q) and ae. in Q, (4.22)
w,, — w weakly inL3(0, T; W), asm — o0, Y € S(uy,, w,,) and

ym — y weakly inw(V), asm — oo. (4.23)
Thus for everyn € N, we have

V() + Ay (1) + xu (@) = (1) + B(O)w,,(t) ae.t € (0,T) (4.24)
ym(o) =)o

Y (X, 1) € BCx, t, um(x, 1), yu(x, 1)) ae in Q. (4.25)

We shall show thay € S(u, w). First of all, by the hypothesi#/ (U), we may

assume that € U,,. We may also notice that € W,, since W,, is weakly

closed byH (U) and Mazur’s theorem. Sinc# (V) C # is compact, from (4.23),
we have

ya. —y IinJ andae in Q (4.26)

for a next subsequence. Due to the growth condi#tbiB)(v), (4.22) and (4.26),
we get
xmllze < s (1 + lumllze + [lymllse) < const.,

and so we have

Xm — x Wweakly in# with somey € #. (4.27)

From (4.22), (4.25), (4.26), (4.27) and the fact tﬁais convex, compact valued
multifunction, we obtain by using Convergence Theorem of [2] that

x(x,1) € B(x,t,u(x, 1), y(x,1)) ae.inQ. (4.28)
Moreover, by hypothesi#l (B), we have
Bw,, — xm — Bw — x weakly inF, (4.29)

where (Bw)(t) = B@)w(t). Since the sefy € W(V) : y(0) = yo} (being
closed and convex) is weakly closed (by Mazur's theorem again), from (4.23), we
immediately get

y(0) = yo. (4.30)
To finish the proof it is enough to show that

Ay, — Ay weaklyinV’. (4.31)
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Analogously toStep 4in the proof of Theorem 3.1 the operatarsatisfies condi-
tions:

Ay, — z weakly inV’ for y,, — y weakly inV and
lim sup{{Ayn, ym)) < {(z,¥))

Since 4 is of type (M), it follows that Ay = z, so the convergence (4.31) is
proved.

Finally, using (4.23), (4.29), (4.31) and lettimg — oo, from (4.24), we con-
clude that

V(1) + (AY)(@) + x (@) = f(t) + (Bw)(2) fora.e.t € (0, T).

This together with (4.28) and (4.30) gives= S(u, w), which completes the proof
of the proposition. a

REMARK 4.1. The Proposition 4.1 still holds if in the hypothe&sU) we as-
sume only thalJ,, is a closed subset df?(Q).

Now we are in a position to give a result on existence of optimal solutions to
(CP). We restrict ourselves to the case- 2. We admit

H(J): J:H x H xL?*0,T; W) — Ris a cost functional of the form

T
J(y, u, w) =/ L, y@),u(), w()) dt,
0

whereL: [0,T] x H x H x W — R U {400} is a measurable function which
satisfies three conditions:

@i L(,-, - -) Iissequentially lower semicontinuous ¢hx H x W, a.e.t €
(O, 7).

(i) L, vy,--) isconvexonH x W, forally € H and a.et.

(iii) there existM > 0 and ¥ e LY(0, T) such thatforaly e H,u ¢ H,w e W
and a.et, we haveL (t, y, u, w) = ¥ () + M (Iy| + |ul® + [lw|[}) .

THEOREM4.1. Let Hi(Q) € V < HY(Q). If the hypothesesi (U), H(B),
H(B), H(A) and H(J) hold, then the control problem (CP) has a solution.

Proof. By Theorem 3.1, we have tha&t(u, w) # ¢ for all (u,w) € U,; x
Waa. Let (v, ug, wi) € S(ug, wy) x Uy x W,y be a minimizing sequence, i.e.
Iikm J s ug, w) = inf{J(y,u, w) 1y € S(u, w), (u, w) € U,y x W,y}. From the
hypothesisH (U) and the fact thatw,} is bounded irW,,; (by the coercivity of/),
by passing to a subsequence if necessary, we may assume that

(up, wy) = W*, w*) inL%(Q) x (w— L0, T; W)) (4.32)
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with u* € U,,. As W,, is weakly closed, we get* € W,,.

We shall derive some a priori bounds for solutionse S (uy, wy). For this pur-
pose we use a similar argument as in Section 3 and replace (4.21) by the equivalent
form

(Ve (), v) + (A1), v) + (xx (@), v) = (f(©), v) + (BO)wi (1), v)
forallve Vandae t € (0, T),

v (0) = yo

xi(x, 1) € Blx, t,up(x, 1), ye(x, 1)) ae (x,1) € Q.

(4.33)

Using H(B)(v), we havel|B(, ur(-), ye(Dllze < c5 (1 + Huellse + 1yells)
and consequently,

xellge < €5 (X4 Tuwllze + yillse) , (4.34)

< o (L kI Bagq oy + 138 B 1)
(4.35)

//Xk(x,s)yk(x,s)dxds
0 Ja

for ¢ € (0, T) with positive constantss andcg.
From (4.33), using integration by parts formula, (4.38),4)(i) and the Cauchy
inequality, fors € [0, T'], we obtain

! 1 c1 1 1
> (|yk(t)|2 _ ka(O)IZ) < 2_01”f”%/+5||yk”iz(0*’?‘/)+§||£wk”§f’+§||yk”i2(o,z;f1)
2 2 2 )
+ce <1+ earl% + ”kaLZ(o,;;H)) — 1l 220,12y + 2l k3 20,0y + €3

Hence

1 2, 4 2 1. 2 2 1 2 2
§|)’k(1)| +E||yk||LZ(Q’t;V)<§|y0| +2_Cl||f||vl+§||B||LZ(O,T;£(W,H))||wk||L2(0,T;W)

1
+co + caT + collul5, + (5 +ce+ Cz) ||yk||iz(o’,;H)-
By Gronwall’s inequality, it follows thaty,(z)| < ci13 for all ¢+ € [0, T'], and
subsequently,

llykllv < c1a for k € N with c14 > 0. (4.36)
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We observe that from (4.33H (A)(ii) and Holder’s inequality, we have

(e O Nl lvlly + [T Bwillsellvllze + 1 xel el o115
+2(llgll20.7) + callyellv) [lvllv

for v € V. Hence, by (4.32), (4.34) and (4.36) we get
[1yellv < c15 for k € N with ¢35 > 0.

From this and (4.36) we conclude tHayt} is bounded inw (V). Hence, by passing
to a subsequence if necessary, we assume that

ye — ¥y weakly inw(V). (4.37)

Then invoking Proposition 4.1 and the convergences (4.32), (4.37), wg*get
S(u*, w*), i.e. the triplet(y*, u*, w*) is admissible for (CP).
Finally, from hypothesig? (J)(iii), we deduce that

L, y,u,w)=2vy@&)—M(y|l+ |ul+|lwllw), VyeH uelU, weW, aer.

Now applying Theorem 2.1 from [3], we obtain is sequentially lower semi-
continuous onL(0, T; H) x (w — L0, T; H x W)) and, in consequencd,
is sequentially lower semicontinuous @t x (w — L?(0, T; H x W)). Hence and
from (4.32) and (4.37), we conclude thaty*, u*, w*) = inf{J(y,u,w) : y €
S(u, w), (u, w) € Uyy x Wy}, which completes the proof of the theorem. O

REMARK 4.2. The hypothesi$f (J) incorporates the quadratic cost functionals
considered by Lions [14]. In particular, we may také, y, u, w) = |Cy — y|> +
(N1u, u) g + (Now, w)y, WhereC, Ny € L(H), N, € L(W), W being a Hilbert
space,(N;z,z) > v;|z|> with v; > 0,i = 1,2 andy is a given element (desired
output) in H. Similarily, we can consider a terminal cost functional as well as a
combination of the two. For details, we refer to [14] and [1].
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